University of Minnesota
University of Minnesota
http://www.umn.edu/

Unit's home page.

CEMS > About > Faculty > Frank Bates

Frank S. Bates

Frank Bates

Information

Regents Professor

Phone: 612-624-0839
Email: bates001@umn.edu


Related Links:

Degrees

  • B.S., Mathematics, State University of New York at Albany, 1976
  • S.M., Chemical Engineering, Massachusetts Institute of Technology, 1979
  • Sc.D., Chemical Engineering, Massachusetts Institute of Technology, 1982

Research Areas

The central theme of our research program derives from a desire to better understand the thermodynamics and dynamics of polymers and polymer mixtures. Three broad areas of investigation have been developed for addressing these issues: polymer synthesis, chemical modification, and molecular characterization; structural analysis by neutron, X-ray, and light scattering, and electron microscopy; dynamical characterization through rheological and processing measurements. These efforts address issues in each field individually, as well as contributing to our central goals.

Anionic and living free-radical polymerization represent the primary synthetic tools with which we control polymer molecular weight, molecular weight distribution, microstructure, and chain architecture. Subsequent modifications (eg. catalytic hydrogenation) provide for the preparation of model functionalized (eg. saturated) polymers. Molecular characterization techniques include NMR, size exclusion chromatography, and light scattering.

Establishing the phase behavior and excess thermodynamic properties of polymer mixtures and block copolymers is accomplished through extensive use of small-angle neutron scattering and neutron reflection at national facilities, along with X-ray and light scattering conducted in our laboratory. We are particularly interested in elucidating the molecular mechanisms governing nanoscale morphology formation in melts and solutions, especially in aqueous systems, and related applications.

Polymer phase state is often correlated with rheological properties, particularly for block copolymers, which we investigate in conjunction with the scattering experiments.

This basic research program affects a variety of technologically important fields, including polymer processing, composites, fracture mechanics, separations, catalysis, and drug delivery.

Selected Publications

  • “Multiblock Polymers: Panacea or Pandora’s Box?” by F.S. Bates, M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney and G.H. Fredrickson, Science, 336, 434-440 (2012).
  • “Dodecagonal Quasicrystalline Morphology in a Poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) Tetrablock Terpolymer,” by J. Zhang and F.S. Bates, J. Am. Chem. Soc., 134, 7636-7639 (2012).
  • “Structure and Dynamics of Elastomeric Multiblock Terpolymers containing Glassy, Rubbery and Semicrystalline Blocks,” by F. Zuo, C.G. Alfonso and F.S. Bates, Macromolecules, 44, 8143-8153 (2011).
  • “Discovery of a Frank-Kasper sigma-Phase in Sphere Forming Block Copolymer Melts,” by S. Lee, M.J. Bluemle and F.S. Bates, Science, 330, 349-353 (2010).
  • "Molecular Exchange in Diblock Copolymer Micelles: Hypersensitivity to Core Chain Length," by S.-H. Choi, T.P. Lodge and F.S. Bates, Phys. Rev. Lett.,104, 047802 (2010).
  • "Mechanical Consequences of Molecular Composition on Failure in Polyolefin Composites Containing Glassy, Elastomeric, and Semicrystalline Components" by M.K. Mahanthappa, M.A. Hillmyer and F.S. Bates, Macromolecules, 41, 1341 (2008).
  • "Disordered Network State in Hydrated Block Copolymer Surfactants" by S. Jain, X. Gong, L.E. Scriven and F.S. Bates, Phys. Rev. Lett., 96, 138304 (2006).
  • "Microstructure and Mechanical Properties of Semicrystalline-Rubbery-Semicrystalline Triblock Copolymers" by C.M. Koo, L. Wu, L.S. Lim, M.K. Mahanthappa, M.A. Hillmyer and F.S. Bates, Macromolecules, 38, 6090 (2005).
  • "Ordered Network Phases in Linear Poly(Isoprene-b-Styrene-b-Ethylene Oxide) Triblock Copolymers," by T.H. Epps, III, E.W. Cochran, T.S. Bailey, R.S. Waletzko, C.M. Hardy and F.S. Bates, Macromolecules, 37, 8325 (2004).
  • "Shear-induced Network-to-Network Transition in a Block Copolymer Melt," by E.W. Cochran and F.S. Bates, Phys. Rev. Lett., 93, 087802 (2004).
  • "On the Origins of Morphological Complexity in Aqueous Dispersions of Block Copolymer Surfactants," by S. Jain and F.S. Bates, Science, 300, 460 (2003).
  • "High Strength Welds in Metallocene Polypropylene/Polyethylene Laminates," by K.A. Chaffin, J.S. Knutsen, F.S., Bates and P. Brant, Science, 288, 2187 (2000).
  • "Giant Wormlike Rubber Micelles," by Y.-Y. Won, H.T. Davis and F.S. Bates, Science, 283, 960 (1999).
  • "Block Copolymers - Designer Soft Materials," by F.S. Bates and G.H. Fredrickson, Physics Today, 52, 32 (1999).
  • "Polymersomes: Vesicles Made from Diblock Copolymers," by B.M. Discher, Y.-Y. Won, D.S. Ege, J. C.-M. Lee, F.S. Bates, D.E. Discher and D.A. Hammer, Science, 284, 1143 (1999).