Bharat Jalan

Bharat Jalan

Assistant Professor
Contact Information
  • B. Tech, Materials Science, Indian Institute of Technology, Madras, 2006
  • Ph.D., Materials Science, University of California, Santa Barbara, 2011

Research Areas

Recent News:

Research Interests

Advancement in thin film growth techniques drives the discovery of new physics and technologies. Thin film growth approaches and characterization techniques have become more crucial than ever to design and evaluate many emerging materials systems, such as complex oxides. Our group's research is focused on growth of oxide thin films using molecular beam epitaxy (MBE) approach with a goal to bring oxide materials quality to a new level of perfection needed for both fundamental science and for application in electronic devices. The growth of compound semiconductors with unprecedented structural and electronic quality and with engineered heterostructures has led to the discovery of many novel phenomena and has thereby enabled the development of several new technologies through device fabrication, such as heterojunction bipolar transistors. Our understanding in the area of binary and complex oxide thin films and their heterostructures is limited. Complex oxides are fundamentally different from conventional semiconductors. They offer multi-functionalities as diverse as ferroelectricity, superconductivity, and strongly-correlated Mott-Hubbard-type insulator characteristics. Furthermore, emergent phenomena at oxide interfaces offer the capability to tailor materials properties in entirely new ways with potential for multi-functional devices.

Using the hybrid MBE approach (combination of chemical beam epitaxy and solid source epitaxy) to grow oxide films with precise stoichiometry and atomic layer control, we focus on engineering oxide growth to create the next generation of functional oxide quantum structures. We explore nanoscale structures of oxides as platforms to study structure-property relationships, thermoelectric properties and to develop basic knowledge needed to understand correlated electron physics via different approaches including band structure, band-gap and strain engineering. Our interdisciplinary work involves a close collaboration between materials scientists, chemists, physicists and electrical engineers. We employ thin film growth using ultra high vacuum, low energetic, hybrid molecular beam epitaxy. Structural characterization methods include high-resolution x-ray diffraction, x-ray reflectivity, atomic force microscopy and electron microscopy. We employ low temperature electrical and thermal transport measurements to advance our ability to understand materials properties and control them using external sources such as electric and magnetic field.


  • AFOSR YIP Award, 2016
  • MRS Graduate Student Gold Award, USA 2010
  • Student MBE Award, International MBE Conference, Germany 2010
  • Young Scientist Award, PCSI Conference, USA 2009

Selected Publications

  • B. Jalan, S. J. Allen, G. Beltz, P. Moetakef and S. Stemmer, "Enhancing the electron mobility in SrTiO3 with strain," Appl. Phys. Lett., 98, 132102 (2011).
  • P. Moetakef, J. Y. Zhang, A. Kozhanov, B. Jalan, R. Seshadri, S. J. Allen and S. Stemmer, "Transport in ferromagnetic GdTiO3/SrTiO3 heterostructures," Appl. Phys. Lett., 98, 112110 (2011).
  • B. Jalan and S. Stemmer, "Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films," Appl. Phys. Lett., 97, 042106 (2010).
  • B. Jalan, S. Stemmer, S. Mack and S. J. Allen, "two-dimensional electron gas in delta- doped SrTiO3," Phys. Rev. B, 82, 081103 (2010).
  • J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert and S. Stemmer, "Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2/Vs," Nat. Mater., 9, 482 (2010).
  • J. M. Lebeau, R. Engel-Herbert, B. Jalan, J. Cagnon, P. Moetakef and S. Stemmer, "Stoichiometry optimization of homoepitaxial oxide thin films using x-ray diffraction," Appl. Phys. Lett., 95, 142905 (2009).
  • B. Jalan, J. Cagnon, T. E.Mates, and S. Stemmer, "Analysis of carbon in SrTiO3 grown by hybrid molecular beam epitaxy," J. Vac. Sci. Technol. A, 27, 1365 (2009).
  • B. Jalan, P. Moetakef, and S. Stemmer, "Molecular beam epitaxy of SrTiO3 with a growth window," Appl. Phys. Lett., 95, 032906 (2009).
  • B. Jalan, R. Engel-Herbert, N. J. Wright, and S. Stemmer, "Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach," J. Vac. Sci. Technol. A, 27, 461 (2009).
  • B. Jalan, R. Engel-Herbert, J. Cagnon, and S. Stemmer, "Growth modes in metal-organic molecular beam epitaxy of TiO2 on r-plane sapphire," J. Vac. Sci. Technol. A, 27, 230 (2009).
  • R. Engel-Herbert, B. Jalan, J. Cagnon, and S. Stemmer, "Microstructure of epitaxial rutile TiO2 films grown by molecular beam epitaxy on r-plane Al2O3," J. Crys. Growth, 312, 149 (2009).

Contact Information

Department of Chemical Engineering and Materials Science

421 Washington Ave. SE, Minneapolis, MN 55455-0132

P: 612-625-1313 | F: 612-626-7246

Contact Us

Connect on Social Media

© Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. Privacy Statement