News

Energy researchers break the catalytic speed limit

June 4, 2019 - A team of researchers from the University of Minnesota and University of Massachusetts Amherst has discovered new technology that can speed up chemical reactions 10,000 times faster than the current reaction rate limit. These findings could increase the speed and lower the cost of thousands of chemical processes used in developing fertilizers, foods, fuels, plastics, and more. The research is published online in ACS Catalysis, a leading journal of the American Chemical Society.

Researchers of the Catalysis Center for Energy Innovation, funded by the U.S. Department of Energy, found that they could break the speed limit by applying waves to the catalyst to create an oscillating catalyst. The wave has a top and bottom, and when applied, it permits both parts of a chemical reaction to occur independently at different speeds. When the wave applied to the catalyst surface matched the natural frequency of a chemical reaction, the rate went up dramatically via a mechanism called “resonance.”

“We realized early on that catalysts need to change with time, and it turns out that kilohertz to megahertz frequencies dramatically accelerate catalyst rates,” said Paul Dauenhauer, a professor of chemical engineering and materials science at the University of Minnesota and one of the authors of the study.

Dramatic enhancement in catalyst performance also has the potential to scale down systems for distributed and rural chemical processes. Due to cost savings in large-scale conventional catalyst systems, most materials are only manufactured in enormous centralized locations such as refineries. Faster dynamic systems can be smaller processes, which can be located in rural locations such as farms, ethanol plants, or military installations.

“This has the potential to completely change the way we manufacture almost all of our most basic chemicals, materials, and fuels,” said Professor Dionisios Vlachos, director of the Catalysis Center for Energy Innovation. “The transition from conventional to dynamic catalysts will be as big as the change from direct to alternating current electricity.”

To read the full research paper, entitled “Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response,” visit the ACS Catalysis website: https://pubs.acs.org/doi/10.1021/acscatal.9b01606

The discovery of dynamic resonance in catalysis is part of a larger mission of the Catalysis Center for Energy Innovation, a U.S. Department of Energy-Energy Frontier Research Center, led by the University of Delaware. Initiated in 2009, the Catalysis Center for Energy Innovation has focused on transformational catalytic technology to produce renewable chemicals and biofuels via advanced nanomaterials. Learn more on the Catalysis Center for Energy Innovation website: https://www.ccei.udel.edu/

Excerpt from a news release written by Rhonda Zurn, College of Science and Engineering, and Lacey Nygard, University News Service.

Related Link: https://cse.umn.edu/college/news/energy-researchers-break-catalytic-speed-limit

Contact Information

Department of Chemical Engineering and Materials Science

421 Washington Ave. SE, Minneapolis, MN 55455-0132

P: 612-625-1313 | F: 612-626-7246

Contact Us

Connect on Social Media

© Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. Privacy Statement