Mahanthappa using nanoconfined water dynamics to shape future fuel cells

March 30, 2017 - Nanoconfined water is everywhere. Minerals, cells, living tissue membranes, synthetic water purification membranes, and countless other substances host water confined in spaces small enough to measure in nanometers. Studying the water dynamics in these materials, or nanopores, can lead to significant technological advances.

A team from the University of Minnesota is using neutrons to study nanoporous lyotropic liquid crystals, formed by the self-assembly of “soap-like” molecules. This team—composed of Dr. Mahesh Mahanthappa and several of his students—are using the BASIS instrument at Oak Ridge National Laboratory’s Spallation Neutron Source, SNS beam line 2, to study how water behaves in membranes.

By varying the chemical structures of the surfactants and the amount of water available to induce the self-assembly of these materials, the team can access various nanopore shapes and sizes. Altering these factors also helps the team study how water dynamics change depending on the pore structure and its chemical functionalities. In addition to the scientific implications, results from these studies hold promise for improvements in everyday technology.

Previous research indicates that nanoconfined water directly affects proton conductivity and transport, and the team hopes to investigate the extent of this relationship. In a discovery that supports this theory, the Mahanthappa group recently measured high ion conductances through water-filled nanochannels in lyotropic liquid crystals. The SNS facility’s resources were vital for identifying the tangible results of this experiment.

“The high flux and energy resolution afforded by the BASIS instrument at SNS, coupled with our fantastic collaborative interactions with its beamline scientists, have enabled our studies that seek to uncover new molecular design principles for ion transporting membranes for myriad energy applications,” Mahanthappa said.

This research was funded under U.S. Department of Energy, Basic Energy Science contract DE-SC0010328.

SNS is a Department of Energy Office of Science User Facility. UT-Battelle manages ORNL for the DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit —Elizabeth Rosenthal

Related Link:

Contact Information

Department of Chemical Engineering and Materials Science

421 Washington Ave. SE, Minneapolis, MN 55455-0132

P: 612-625-1313 | F: 612-626-7246

Contact Us

Connect on Social Media

© Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. Privacy Statement