Efie Kokkoli

Efie Kokkoli

Contact Information
  • Diploma, Chemical Engineering, Aristotle University of Thessaloniki, 1992
  • M.S., Chemical Engineering, University of Illinois at Urbana-Champaign, 1994
  • Ph.D., Chemical Engineering, University of Illinois at Urbana-Champaign, 1998

Research Areas

Recent News:

Research Interests

DNA Nanotechnology - The field of DNA nanotechnology has transformed DNA from a material that stores genetic information into a construction tool that can be used to build 3D scaffolds and devices with nanoscale features. There are a variety of strategies that can be used to create DNA nanostructures, each that use a combination of many different single stranded DNA (ssDNA) sequences that when mixed together and subjected to specific annealing conditions can produce double stranded DNA segments that organize into highly uniform structures of the desired shape. In our group we use a different approach where we start with a single hydrophilic ssDNA sequence and conjugate it to a hydrophobic tail to form an amphiphilic molecule. The amphiphilic nature of the conjugate induces spontaneous assembly of the molecules when added to an aqueous environment. Our ssDNA-amphiphiles, containing a random nucleic acid headgroup or an aptamer, can adopt a variety of self-assembled structures including twisted and helical bilayer nanotapes and nanotubes. The ability to create DNA nanotubes from ssDNA-amphiphiles is particularly exciting, and our goal is to design and engineer different nanotubes and other DNA nanostructures that will be used for targeted delivery of small molecules and nucleic acids to tissues of interest.

Multi-Targeted Gene & Drug Delivery - Currently, the main problems associated with systemic drug administration are the necessity of a large drug dose to achieve high local concentration, non-specific toxicity and other adverse side-effects due to high drug doses, even biodistribution throughout the body and lack of specific affinity for the pathological site. Targeted drug delivery can bring a solution to all these problems. Our goal is to engineer multi-targeted therapeutic systems that could aid recognition of the site of interest and delivery of the therapeutic load into a variety of target cells. Therefore, higher degree of specificity for cancer cells could be achieved by designing a modular multi-targeted non-viral system that introduces simultaneous targeting of multiple overexpressed cancer surface receptors as the first level of targeting at the extracellular level. Subsequently, transcriptional targeting is introduced as the second level of specific targeting. Our studies provide an insight into the mechanisms by which surface molecules, such as peptide-amphiphile ligands and polymers, modulate the non-viral nanoparticle behavior, and will contribute significantly to the rational design and engineering of gene and drug delivery systems with improved targeting functionality.

Multicomponent Peptide Hydrogels for Tissue Engineering - The design of nanofiber scaffolds has been a key objective in tissue engineering as they structurally mimic the natural extracellular matrix (ECM) found in tissues. In an attempt to provide a nanofiber scaffold with ligands that can promote cell adhesion and ECM production, we propose the use of our peptide-amphiphile (peptide conjugated to a lipid-like tail or a polymer) nanofibers as a potential scaffold for tissue engineering. The peptide-amphiphiles self assemble into nanofibers in an aqueous environment and form hydrogels. Our goal is to functionalize the hydrogels with various peptides that mimic cell binding and growth factor binding domains combined in a modular fashion to produce defined, multicomponent hydrogels, optimized to support the culture and differentiation of different cells, including induced pluripotent stem cells (iPSCs). By optimizing peptide ligand presentation and mechanical properties in the peptide-amphiphile gel system we aim to see improved adhesion, survival and enhanced differentiation efficiency of different cells entrapped in the gel.


  • J.D. Lindsay Lecture, Texas A&M, 2014
  • Centennial Graduate Seminar Series: Stanley Lecture, Iowa State University, 2013
  • National Academy of Engineers U.S. Frontiers of Engineering Symposium (Invited Speaker), 2010
  • NSF CAREER Award, 2009
  • Institute of Technology Best Professor in CEMS Award, 2008
  • National Academy of Engineers U.S. Frontiers of Engineering Symposium (Invited Participant & Organizer), 2007, 2008
  • Camille Dreyfus Teacher Scholar Award, 2007
  • McKnight Land-Grant Assistant Professor Award, 2006-2008
  • 3M Nontenured Faculty Award, 2006-2008

Selected Publications

  • Pearce, T.R., and Kokkoli, E. (2015). DNA Nanotubes and Helical Nanotapes via Self-Assembly of ssDNA-Amphiphiles. Soft Matter, 11 (1):109-117
  • Waybrant, B., Pearce, T.R., and Kokkoli, E. (2014). Effect of Polyethylene Glycol, Alkyl, and Oligonucleotide Spacers on the Binding, Secondary Structure, and Self-Assembly of Fractalkine Binding FKN-S2 Aptamer-Amphiphiles. Langmuir, 30 (25):7465–7474.
  • Adil, M.M., Erdman, Z.S., and Kokkoli, E. (2014). Transfection Mechanisms of Polyplexes, Lipoplexes and PR_b Targeted and Non-Targeted Stealth Liposomes in α5β1 Integrin Bearing DLD-1 Colorectal Cancer Cells. Langmuir, 30 (13):3802-3810.
  • Adil, M.M., Levine, R.M., and Kokkoli, E. (2014). Increasing Cancer-Specific Gene Expression by Targeting Overexpressed α5β1 Integrin and Upregulated Transcriptional Activity of NF-κB. Mol. Pharm., 11 (3):849-858.
  • Atchison, N., Swindlehurst, G., Papas, K.K., Tsapatsis, M., and Kokkoli, E. (2014). Maintenance of Ischemic β Cell Viability Through Delivery of Lipids and ATP by Targeted Liposomes. Biomater. Sci., 2 (4):548-559.
  • Pearce, T.R., Waybrant, B., and Kokkoli, E. (2014). The Role of Spacers on the Self-Assembly of DNA Aptamer-Amphiphiles into Micelles and Nanotapes. Chem. Commun., 50 (2):210-212.
  • Levine, R.M., Pearce, T.R., Adil, M., and Kokkoli, E. (2013). Preparation and Characterization of Liposome-Encapsulated Plasmid DNA for Gene Delivery. Langmuir, 29 (29):9208-9215.
  • Adil, M., Belur, L., Pearce, T.R., Levine, R.M., Tisdale, A.W., Sorenson, B.S., McIvor, R.C., and Kokkoli, E. (2013). PR_b Functionalized Stealth Liposomes for Targeted Delivery to Metastatic Colon Cancer. Biomater. Sci., 1 (4):393-401.
  • Levine, R.M., Scott, C.M., and Kokkoli, E. (2013). Peptide Functionalized Nanoparticles for Nonviral Gene Delivery. Soft Matter, 9 (4):985-1004.
  • Waybrant, B., Pearce, T.R., Wang, P., Sreevatsan, S., and Kokkoli, E. (2012). Development and Characterization of an Aptamer Binding Ligand of Fractalkine Using Domain Targeted SELEX. Chem. Commun., 48 (80):10043-10045.
  • Pangburn, T.O., Georgiou, K., Bates, F.S., and Kokkoli, E. (2012). Targeted Polymersome Delivery of siRNA Induces Cell Death of Breast Cancer Cells Dependent upon Orai3 Protein Expression. Langmuir, 28 (35):12816-12830.
  • Pearce, T.R., Shroff, K., and Kokkoli, E. (2012). Peptide Targeted Lipid Nanoparticles for Anticancer Drug Delivery. Adv. Mat., 24 (28):3803-3822.
  • Shroff, K., and Kokkoli, E. (2012). PEGylated Liposomal Doxorubicin Targeted to α5β1-Expressing MDA-MB-231 Breast Cancer Cells. Langmuir, 28 (10):4729-4736.
  • Pangburn, T.O., Bates, F.S., and Kokkoli, E. (2012). Polymersomes Functionalized via “Click” Chemistry with the Fibronectin Mimetic Peptides PR_b and GRGDSP for Targeted Delivery to Cells with Different Levels of α5Î21 Expression. Soft Matter, 8 (16):4449-4461.
  • Shroff, K., Rexeisen, E.L., Arunagirinathan, M.A., and Kokkoli, E. (2010). Fibronectin-Mimetic Peptide-Amphiphile Nanofiber Gels Support Increased Cell Adhesion and Promote ECM Production. Soft Matter, 6 (20):5064-5072.

Contact Information

Department of Chemical Engineering and Materials Science

421 Washington Ave. SE, Minneapolis, MN 55455-0132

P: 612-625-1313 | F: 612-626-7246

Contact Us

Connect on Social Media

© Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. Privacy Statement